IEEE Symposium on Diagnostics of Electrical Machines, Power Electronics and Drives (SDEMPED) 2017

The following papers have been accepted for presentation at the IEEE Symposium on Diagnostics of Electrical Machines, Power Electronics and Drives (SDEMPED) 2017 which will take place in Tinos, Greece in Aug./Sep. 2017.

A. Arvanitopoulos, N. Lophitis, K. N. Gyftakis, M. Belanche Guadas, S. Perkins and M. Antoniou, “Physical parameterisation of 3C- Silicon Carbide (SiC) with scope to evaluate the suitability of the material for power diodes as an alternative to 4H- SiC”, IEEE SDEMPED 2017, Tinos, Greece, Aug./Sep. 2017, accepted.

P. A. Panagiotou, K. N. Gyftakis, N. Lophitis, M. D. McCulloch and D. A. Howey, “Investigation of Traction Motor Windings’ Insulation Capacitance at Switching Frequencies under Accelerated Thermal Stress”, IEEE SDEMPED 2017, Tinos, Greece, Aug./Sep. 2017, accepted.

Power electronics in automotive industry

There are 65 million cars made every year, in 2050 all of them will be electric or hybrid electric.

Legislation is driving the emissions allowed from every car down. That will require the electrification of the vast majority of vehicles produced. The power electronics industry will need to evolve dramatically in order to cope with the future supply needs: 65 million converter units for cars per year. That present us with a massive challenge but also an opportunity!

So who’s leading the market? The Japanese with toyota being the dominant player for hybrid electric cars, currently having 85% of market share. They already solved a lot of the challenges that were presented to them. This includes electrical safety, reliability, supply chain issues, technology and cost.

Is silicon carbide going to be adopted any time soon? Probably not. Electrification of any equipment used in a car, pumps, etc, costs much more than conventional mechanical parts. It seems that silicon technology will stick around until a massive reduction in cost and improvement in reliability happens.

Trains are expected to be the first type of vehicles to get the silicon carbide technology. Electrification is already established in the trail industry, and trains can stand the cost. That is because they are big systems, low numbers, high volume, long live, 25 years at least.

Are there any other applications pushing for more power electronics?

Ships will also be required to have a huge electric drive system. Legislation will require them to get in the port with the engines off.

Source: https://youtu.be/cGRtNorVYVc

 

 

4.5kV Bi-mode Gate Commutated Thyristor design with High Power Technology and shallow diode-anode

4.5kV Bi-mode Gate Commutated Thyristor design with High Power Technology and shallow diode-anode

Neophytos Lophitis*‡, Marina Antoniou*, Florin Udrea*, Umamaheswara Vemulapati§, Martin Arnold+, Munaf Rahimo+, Jan Vobecky+

*Department of Engineering, University of Cambridge, Cambridge, UK. ‡Faculty of Engineering, Environment and Computing, Coventry University, Coventry, UK. §ABB Switzerland Ltd, Corporate Research, Baden-Dättwil, Switzerland. +ABB Switzerland Ltd, Semiconductors, Lenzburg, Switzerland

The 28th IEEE International Symposium on Power Semiconductor Devices and ICs (ISPSD), June 2016, Prague, Czech Republic.

Power Electronics: The Rise Of The Wide Bandgap Semiconductors

Power Electronics: The Rise Of  The Wide Bandgap Semiconductors.
Samuel Perkins and Anastasios Arvanitopoulos

Power Electronics and Trends – Power Electronics is the discipline of controlling, converting and conditioning electrical power using power solid state electronic devices (Power Semiconductors) [1]. Advancements in many sectors, such as the automotive, aerospace, traction and consumer electronics are coupled to the advancements in power electronics. Specifically to the target of achieving increased efficiency of electric power conversion, of reducing size, weight and cost of the power converter. It also links to the reduction of power loss in the passive components. These are underpinned by the technological advancements achieved in power semiconductor device design and semiconductor materials. Silicon (Si) technology reached its technological maturity, therefore further improvements in power electronics of silicon technology are expected to be incremental rather than revolutionary. A step improvement can be achieved by the utilization of wide bandgap semiconductor materials such as the Silicon Carbide (SiC) and Gallium Nitride (GaN). Because of the advanced electrical properties of these materials, revolutionary improvements can be expected through their improvement and utilisation.