Paper accepted for presentation at the 2017 IEEE 5th Workshop on Wide Bandgap Power Devices and Applications, 2017.

The following paper has been accepted for presentation at the 2017 IEEE 5th Workshop on Wide Bandgap Power Devices and Applications, 2017. The conference will take place in Hyatt Regency Tamaya Resort, Albuquerque, NM USA

S. Perkins, A. Arvanitopoulos, K. N. Gyftakis, and N. Lophitis, “A Comprehensive Comparison of the Static Performance of Commercial GaN-on-Si Devices,” in 2017 IEEE 5th Workshop on Wide Bandgap Power Devices and Applications, 2017.

This work presents a comprehensive and experimentally derived comparison of the static performance of commercial Gallium Nitride on Silicon (GaN-on-Si) devices and references their performance against a state-of-the- art Si Super-Junction (S-J) device. The Panasonic PGA26C09DV Enhancement mode (E-mode) p-GaN layer Gate Injected Transistor (GIT) and the Transphorm TPH320 series composite cascode GaN High Electron Mobility Transistor (HEMT) have been analysed and the experimental results illustrate typical performance characteristics of the different device technologies. Their experimental performance characteristics have been validated, explained through literature and application considerations have been stated.

Paper accepted in IOP Semiconductor Science and Technology

The following paper was accepted for publication in a special edition of IOP Semiconductor Science and Technology, special issue on Silicon Epitaxy and Silicon Heterostructures.

A. Arvanitopoulos, N. Lophitis, K. N. Gyftakis, S. Perkins, and M. Antoniou, “Validated physical models and parameters of bulk 3C-SiC aiming for credible Technology Computer Aided Design (TCAD) simulation,” Semiconductor Science and Technology, Aug. 2017. doi: 10.1088/1361-6641/aa856b

The cubic form of SiC (β- or 3C-) compared to the hexagonal α-SiC polytypes, primarily 4H- and 6H-SiC, is of special interest because it has lower growth cost and can be grown heteroepitaxially in large area Silicon (Si) wafers. This in conjunction with the recently reported growth of improved quality 3C‐SiC, make the development of devices an imminent objective. However, the readiness of models that accurately predict the material characteristics, properties and performance is an imperative requirement for attaining the design and optimization of functional devices. The purpose of this study is to provide and validate a comprehensive set of models alongside with their parameters for bulk 3C-SiC. The validation process revealed that the proposed models are in a very good agreement to experimental data and confidence ranges were identified. This is the first piece of work achieving that for 3C-SiC. Considerably, it constitutes the necessary step for Finite Element Method (FEM) simulations and Technology Computer Aided Design (TCAD).

IEEE Symposium on Diagnostics of Electrical Machines, Power Electronics and Drives (SDEMPED) 2017

The following papers have been accepted for presentation at the IEEE Symposium on Diagnostics of Electrical Machines, Power Electronics and Drives (SDEMPED) 2017 which will take place in Tinos, Greece in Aug./Sep. 2017.

A. Arvanitopoulos, N. Lophitis, K. N. Gyftakis, M. Belanche Guadas, S. Perkins and M. Antoniou, “Physical parameterisation of 3C- Silicon Carbide (SiC) with scope to evaluate the suitability of the material for power diodes as an alternative to 4H- SiC”, IEEE SDEMPED 2017, Tinos, Greece, Aug./Sep. 2017, accepted.

P. A. Panagiotou, K. N. Gyftakis, N. Lophitis, M. D. McCulloch and D. A. Howey, “Investigation of Traction Motor Windings’ Insulation Capacitance at Switching Frequencies under Accelerated Thermal Stress”, IEEE SDEMPED 2017, Tinos, Greece, Aug./Sep. 2017, accepted.

Power electronics in automotive industry

There are 65 million cars made every year, in 2050 all of them will be electric or hybrid electric.

Legislation is driving the emissions allowed from every car down. That will require the electrification of the vast majority of vehicles produced. The power electronics industry will need to evolve dramatically in order to cope with the future supply needs: 65 million converter units for cars per year. That present us with a massive challenge but also an opportunity!

So who’s leading the market? The Japanese with toyota being the dominant player for hybrid electric cars, currently having 85% of market share. They already solved a lot of the challenges that were presented to them. This includes electrical safety, reliability, supply chain issues, technology and cost.

Is silicon carbide going to be adopted any time soon? Probably not. Electrification of any equipment used in a car, pumps, etc, costs much more than conventional mechanical parts. It seems that silicon technology will stick around until a massive reduction in cost and improvement in reliability happens.

Trains are expected to be the first type of vehicles to get the silicon carbide technology. Electrification is already established in the trail industry, and trains can stand the cost. That is because they are big systems, low numbers, high volume, long live, 25 years at least.

Are there any other applications pushing for more power electronics?

Ships will also be required to have a huge electric drive system. Legislation will require them to get in the port with the engines off.




4.5kV Bi-mode Gate Commutated Thyristor design with High Power Technology and shallow diode-anode

4.5kV Bi-mode Gate Commutated Thyristor design with High Power Technology and shallow diode-anode

Neophytos Lophitis*‡, Marina Antoniou*, Florin Udrea*, Umamaheswara Vemulapati§, Martin Arnold+, Munaf Rahimo+, Jan Vobecky+

*Department of Engineering, University of Cambridge, Cambridge, UK. ‡Faculty of Engineering, Environment and Computing, Coventry University, Coventry, UK. §ABB Switzerland Ltd, Corporate Research, Baden-Dättwil, Switzerland. +ABB Switzerland Ltd, Semiconductors, Lenzburg, Switzerland

The 28th IEEE International Symposium on Power Semiconductor Devices and ICs (ISPSD), June 2016, Prague, Czech Republic.

Power Electronics: The Rise Of The Wide Bandgap Semiconductors

Power Electronics: The Rise Of  The Wide Bandgap Semiconductors.
Samuel Perkins and Anastasios Arvanitopoulos

Power Electronics and Trends – Power Electronics is the discipline of controlling, converting and conditioning electrical power using power solid state electronic devices (Power Semiconductors) [1]. Advancements in many sectors, such as the automotive, aerospace, traction and consumer electronics are coupled to the advancements in power electronics. Specifically to the target of achieving increased efficiency of electric power conversion, of reducing size, weight and cost of the power converter. It also links to the reduction of power loss in the passive components. These are underpinned by the technological advancements achieved in power semiconductor device design and semiconductor materials. Silicon (Si) technology reached its technological maturity, therefore further improvements in power electronics of silicon technology are expected to be incremental rather than revolutionary. A step improvement can be achieved by the utilization of wide bandgap semiconductor materials such as the Silicon Carbide (SiC) and Gallium Nitride (GaN). Because of the advanced electrical properties of these materials, revolutionary improvements can be expected through their improvement and utilisation.